Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352335

RESUMO

Within a social hierarchy, an individuals' social status determines its physiology and behavior. In A. burtoni, subordinate males can rise in rank to become dominant, which is accompanied by the upregulation of the entire HPG axis, including activation of GnRH1 neurons, a rise in circulating androgen levels and the display of specific aggressive and reproductive behaviors. Cichlids possess two other GnRH subtypes, GnRH2 and GnRH3, the latter being implicated in the display of male specific behaviors. Interestingly, some studies showed that these GnRH neurons are responsive to fluctuations in circulating androgen levels, suggesting a link between GnRH neurons and androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARß) that are encoded by two different genes, ar1 and ar2, respectively. Even though social status has been strongly linked to androgens, whether ARα and/or ARß are present in GnRH neurons remains unclear. Here, we used immunohistochemistry and in situ hybridization chain reaction (HCR) to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.

2.
Cell Rep ; 42(7): 112661, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37347665

RESUMO

Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.


Assuntos
Metamorfose Biológica , Hormônios Tireóideos , Animais , Hormônios Tireóideos/metabolismo , Metamorfose Biológica/fisiologia , Larva/metabolismo
3.
Mol Cell Endocrinol ; 555: 111727, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863654

RESUMO

Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.


Assuntos
Efeitos Antropogênicos , Poluentes Químicos da Água , Animais , Sistema Endócrino , Monitoramento Ambiental , Peixes , Hormônios , Hormônios Tireóideos
4.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156611

RESUMO

Guanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants. Here, we demonstrate that ppGpp biosynthesis is necessary for acclimation to nitrogen starvation in Arabidopsis. We show that ppGpp is required for remodeling the photosynthetic electron transport chain to downregulate photosynthetic activity and for protection against oxidative stress. Furthermore, we demonstrate that ppGpp is required for coupling chloroplastic and nuclear gene expression during nitrogen starvation. Altogether, our work indicates that ppGpp is a pivotal regulator of chloroplast activity for stress acclimation in plants.


Assuntos
Arabidopsis/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Aclimatação , Arabidopsis/genética , Cloroplastos/fisiologia , Cianobactérias/citologia , Regulação da Expressão Gênica de Plantas , Células Vegetais , Estresse Fisiológico
5.
Aquat Toxicol ; 181: 1-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27810487

RESUMO

Thyroid hormones are critically involved in somatic growth, development and metamorphosis of vertebrates. The structural similarity between thyroid hormones and triclosan, an antimicrobial compound widely employed in consumer personal care products, suggests triclosan can have adverse effects on the thyroid system. The sheepshead minnow, Cyprinodon variegatus, is now used in ecotoxicological studies that have recently begun to focus on potential disruption of the thyroid axis by endocrine disrupting compounds. Here, we investigate the in vivo effects of exposure to triclosan (20, 50, and 100µgL-1) on the thyroid system and the embryonic and larval development of C. variegatus. Triclosan exposure did not affect hatching success, but delayed hatching time by 6-13h compared to control embryos. Triclosan exposure affected the ontogenetic variations of whole body thyroid hormone concentrations during the larval phase. The T3 peak around 12-15 dph, described to be indicative for the metamorphosis climax in C. variegatus, was absent in triclosan-exposed larvae. Triclosan exposure did not produce any deformity or allometric repatterning, but a delayed development of 18-32h was observed. We conclude that the triclosan-induced disruption of the thyroid system delays in vivo the start of metamorphosis in our experimental model. We observed a global developmental delay of 24-45h, equivalent to 4-7% prolongation of the developmental time in C. variegatus. The costs of delayed metamorphosis can lead to reduction of juvenile fitness and could be a determining factor in the outcome of competitive interactions.


Assuntos
Disruptores Endócrinos/toxicidade , Peixes Listrados/crescimento & desenvolvimento , Hormônios Tireóideos/metabolismo , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Peixes Listrados/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...